
RESEARCH ARTICLE

Calculating spatial configurational entropy of a landscape
mosaic based on the Wasserstein metric

Yuan Zhao . Xinchang Zhang

Received: 7 September 2018 / Accepted: 28 June 2019 / Published online: 9 August 2019

� Springer Nature B.V. 2019

Abstract

Context Entropy is an important concept tradition-

ally associated with thermodynamics and is widely

used to describe the degree of disorder in a substance,

system, or process. Configurational entropy has

received more attention because it better reflects the

thermodynamic properties of physical and biological

processes. However, as the number of configuration

combinations increases, configurational entropy

becomes too complex to calculate, and its value is

too large to be accurately represented in practical

applications.

Objectives To calculate the spatial configurational

entropy of a landscape mosaic based on a statistical

metric.

Methods We proposed a relative entropy using

histograms to compare two ecosystems with the

Wasserstein metric, and used six digital elevation

models and five simulated data to calculate the entropy

of the complex ecosystems.

Results The calculation and simulation showed that

the purposed metric captured disorder in the spatial

landscape, and the result was consistent with the

general configurational entropy. By calculating sev-

eral spatial scale landscapes, we found that relative

entropy can be a trade-off between the rationality of

results and the cost of calculation.

Conclusions Our results show that the Wasserstein

metric is suitable to capture the discrepancy using

complex landscape mosaic data sets, which provides a

numerically efficient approximation for the similarity

in the histograms, reducing excessive expansion of the

calculated result.

Keywords Boltzmann entropy � Configurational
entropy � Landscape mosaic � Shannon entropy �
Wasserstein metric

Introduction and motivation

Entropy is an important concept traditionally associ-

ated with thermodynamics, and is widely used to

describe the degree of disorder in a substance, system,

or process. In ecology, entropy is often used to express

the diversity or uncertainty of a landscape mosaic.

There are two definitions of entropy, such as thermo-

dynamic entropy and information-theoretical entropy.
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Thermodynamic entropy is usually denoted by S of a

physical system in the statistical thermodynamics

established by Boltzmann and Willard Gibbs in the

1870s. Information theoretical entropy is usually

expressed as H, and was developed by Claude

Shannon and Ralph Hartley in the 1940s.

Shannon’s entropy is more widely used in practice.

Research in many fields has focused directly or

indirectly on information entropy. According to a

review by Vranken et al., the most widely used

concept of entropy in ecology is concentrated in three

indices (Vranken et al. 2015): the Shannon diversity

index (Vajda et al. 1949), the Simpson diversity index

(Simpson 1949), and the Brillouin index (Brillouin

1956). These indicators are an expansion of Shannon’s

entropy. Information entropy is the core of the

calculations for these indicators.

Entropy of interest in the geographic arena has been

used to evaluate the fragmentation and spatial hetero-

geneity of geographical phenomena (Batty 1976;

Gatrell 1977; Foody 1995; Tobler 1997; Goodchild

2003).

More and more studies (Li and Huang 2002;

Leibovici et al. 2014; Leibovici and Birkin 2015)

have shown that Shannon’s entropy only considers the

number of symbols of each type, and the spatial

arrangement of these symbols is completely neglected,

and a set of metrics using information entropy should

consider spatial neighbors. Related cases are more

common in ecology, economics, and geography,

particularly in urban geography and regional science

(Batty 1976; Snickars andWeibull 1977; Feldman and

Crutchfield 2003; Bogaert et al. 2005; Leibovici 2009;

Li et al. 2016).

The first attempts to integrate some specific spatial

properties in the measure of Shannon’s entropy was

suggested by Li and Reynolds (1993). The main idea

was to quantify a measure of contagion and to which

extent regions of a given class are adjacent to regions

of another class, allowing the evaluation of the degrees

of juxtaposition and aggregation of the categorical

data.

Following a similar idea, in the field of cartography,

Bjorke proposed a strategy to consider spatial prop-

erties of amap for entropy computations (Bjoke 1996).

He provided a definition of positional entropy, which

considers all occurrences of map entities as unique

events. Bjorke used conditional entropy to estimate the

similarity of two maps to calculate positional entropy.

Neumann used an entropy measure based on the

degree of the vertices in a graph, showing all

connections within a map among point, line, and area

symbols and obtained the ‘‘topological information

content’’ of the map (Neumann 1994). Leibovici et al.

developed severalspatial entropy indices to character-

ize the distribution of some instances in space and time

(Leibovici et al. 2014).

However, the applicability of Shannon’s entropy in

these studies has been questioned, because there is no

confirmed relevance between Shannon’s entropy and

the spatial pattern or spatial processing. For example,

Vranken et al. considered that no thermodynamic

interpretation of information theory is relevant and

that information entropy is merely a formal parallel to

thermodynamic entropy (Vranken et al. 2015). Li

et al. reported that it is necessary to explore whether

statistical information entropy can be used to effec-

tively measure map information (Li et al. 2016).

Some researchers have returned to Boltzmann’s

entropy, also called configurational entropy, along the

basic principles of thermodynamics/statistical phy-

sics. Cushman reported that landscape ecologists

should consider the relationship between landscape

ecology and thermodynamics (Cushman 2015). He

believed that it is necessary to define structural entropy

of a landscape mosaic to express a baseline to compare

landscape patterns. Cushman’s idea basically follows

Boltzmann’s entropy. The difference between the two

definitions is that they are both an interpretation of the

same mathematical framework with different terms.

It is necessary to consider the original definition of

entropy when we talk about Boltzmann’s entropy.

Historically, Boltzmann proposed using S / lnW to

indicate the degree of system disorder. Around 1900,

Planck improved the formalization of entropy pro-

posed by Boltzmann and described it as S ¼ k lnW;

where k is the Boltzmann constant, and S is the

macrosystem entropy value, which is a measure of the

degree of molecular motion or disorder. W is the

number of possible microstates. The higher theW, the

higher the degree of disorder.

Notably, Boltzmann’s entropy value corresponds

directly to the number of statesW, and it is an absolute

value rather than a relative value. Boltzmann sug-

gested using a distribution of microscopic states. He

assumed that each state of system particles is equal,

and that the number N is an ideal gas, where Ni is the
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state in case of i, and the overall expression of the state

is diverse.

In the definition of Boltzmann’s entropy, the

potential trouble is W. In the microscopic case, we

likely know the specific value of W, because it can

accurately evaluate the state of the system from

microscopic observations. However, the value of

W for a given very large system, even in logarithmic

form, causes numerical overflow, so the value cannot

be expressed exactly.

Cushman used ecological terminology to give

Boltzmann’s entropy equation spatial significance by

transforming the number and state of thermodynamic

particles into the number and classification of land-

scape categories (Cushman 2016). In this way, Boltz-

mann’s entropy is converted to landscape mosaic

configurational entropy. The difference between the

two is that the microscopic features of thermodynamic

entropy are difficult to observe and measure, whereas

the microscopic features of spatial configurational

entropy are relatively easy to detect. Therefore,

entropy is converted to calculate the spatial

configuration.

Gao et al. extended the calculation to a spatial

multi-scale representation of the landscape gradient

model (Gao et al. 2017). They focused on splitting the

landscape lattice into smaller units and recalculated

the number of configurations for each unit by repeat-

ing the above steps. The advantage of their method is

that the spatial scale is more suitable for calculating

landscape gradient entropy. However, several

unsolved problems are present in their work.

The first is that calculations of the microscopic state

are limited to small units, which means that the

relationship of particles may be ignored in the entire

space. The second is that the expression of entropy is

dependent on calculating power and multisets, result-

ing in intensive computing and numerical overflow.

The challenge to calculate configurational entropy

is that the number of points becomes large, and the size

of states grows exponentially, so the combination with

a huge number of microstates may result in failure.

Cushman also realized that calculating configura-

tional entropy is too complex. He proposed a method

to estimate the edge in a landscape configuration using

the shuffle permutation, the central limit theorem, the

normal probability density function, and the micro-

state ratio (Cushman 2018).

Although we question the suitability of Shannon’s

entropy for spatial configuration, it is undeniable that

Shannon’s entropy is more useful because of its

simpler form. We may imitate the definition of

Shannon’s entropy and rethink configurational

entropy from a statistical point of view.

The main objective of this study was to propose an

appropriate metric that can replace absolute configu-

rational entropy and meet the requirements of math-

ematical axioms.

This article is organized as follows. First, we

explore the structure of configurational entropy and

outline a strategy to convert the permutation combi-

nation in configurational entropy into a probability

distribution problem. We then propose a method using

the Wasserstein metric to measure configurational

entropy of a system. We carried out a simulation and

experimental validation of our proposed strategy with

finite samples. Finally, we present a discussion and

provide some concluding remarks.

Spatial configurational entropy

Following the definition of Boltzmann’s entropy, the

definition of configurational entropy is: (Cushman

2018; Gao et al. 2017; Cushman 2016)

S ¼ lnW ð1Þ

whereW is the number of configuration permutations.

If all configurations are distributed throughout a

completely asymmetrical structure containing

N units, then the number of individual configurations

is easy to determine as the number of permutations of

N objects divided by the number of permutations

within the indistinguishable objects. Specifically,

configurational entropy can be written as:

Specifically, configurational entropy can be written

as:

S ¼ ln
N!

N1!N2! � � �Nm!
ð2Þ

¼ lnN!�
Xm

i¼1

lnNi! ð3Þ

where N is the total number of configurations, m is the

number of classes, andN1;N2; � � � ;Nm is the number of

each class. In addition, N1 þ N2 þ N3 þ � � � ¼ N.
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Unfortunately, the problem with this definition for

spatial or image analysis is obtaining the same value

for every different spatial configuration (Fig. 1).

Nevertheless, some of the same elements may be

concentrated in continuous space. This continuity can

be considered a repetition of spatial configuration.

Under the constraint of spatial continuity, the entropy

of the system will decrease more than the random

distribution.

The original definition of configurational entropy

ignores the role of space. The value must be recalcu-

lated for spatial configuration to meet the needs.

Specifically, if class i appears in the consecutive

area indexed as k, and the number of classes in each

area is rij (Fig. 1), then entropy must be divided by

Yk

j¼1

rij! ð4Þ

Assume the number of classes is m, then all repeats

due to spatial continuity are calculated as:

Ym

i¼1

Yk

j¼1

rij! ð5Þ

Further,

ln
Ym

i¼1

Yk

j¼1

rij! ¼
Xm

i¼1

Xk

j¼1

lnrij! ð6Þ

In summary, spatial configurational entropy can be

rewritten as:

lnW ¼ lnN!�
Xm

i¼1

lnNi!�
Xm

i¼1

Xk

j¼1

lnrij! ð7Þ

From configuration to statistics

It is necessary to examine the result before using

Equation (7). For example, as spatial dimension

increases from 10� 10 to 1000� 1000 , the number

of differential permutations increases from 364 to

12815518. In fact, as the dimension and number of

classes increases, the value of configurations rapidly

becomes intractably large.

According to the analysis in the second section, the

entropy value is determined by repetition of the

elements. Focusing on the second part of configura-

tional entropy, we can infer that:

Xm

i¼1

lnNi! ¼ lnN1!þ lnN2!þ � � � lnNm! ð8Þ

¼ ðln 1þ ln 2þ � � � þ lnN1Þ ð9Þ

þ ðln 1þ ln 2þ � � � þ lnN2Þ þ � � � ð10Þ

þ ðln 1þ ln 2þ � � � þ lnNmÞ ð11Þ

In Eq. (11), we temporarily do not know the relation-

ship between N1, � � � ; and Nm. When m is equal to 1,

Nm is equal to N. To ensure that all cases are covered,

we choose the longest sequence to express Eq. (11). It

can be rewritten as:

Xm

i¼1

lnNi! ¼ a1 ln 1þ a2 ln 2þ � � � þ aN lnN ð12Þ

¼ ða1; a2; . . .; aNÞ. . .ðln 1; ln 2; . . .; lnNÞ
ð13Þ

where 1�m�N, and a1; a2; . . .; aN is the coefficient

of ln 1; ln 2; . . .; lnN. The value of
Pm

i¼1 lnNi! is

determined by the series a1; a2; . . .; aN . Actually,

a1; a2; . . .; aN is a histogram of ln 1; ln 2; . . .; lnN. It

is undeniable that many of the coefficients in the series

will be equal to zero, but this does not affect the true

form of the histogram.

In the same way, the third part of Eq. (7) can also be

written as:

Xm

i¼1

Xk

j¼1

lnrij! ¼ ðb1; b2; � � � ; bNÞ � ðln 1; ln 2; � � � ; lnNÞ

ð14Þ

ri1

ri2

r1

ri1

ri2 ri3

ri4

ri5

ri6

ri9

ri8

(a) (b) (c)

Fig. 1 The traditional configurational entropy values of a

spatial configuration for different landscapes are the same
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where b1; b2; . . .; bN is the coefficient of

ln 1; ln 2; . . .; lnN.

The metric for configurational entropy

If we directly calculate spatial configurational entropy

using Eqs. (13) and (14), the problem of entropy

overflow remains unresolved. We are more interested

in the series in Eqs. (13) and (14) because it is simply a

histogram.

A histogram is a representation of a data distribu-

tion, and an estimate of the distribution of variables. A

histogram can be used to estimate the probability

distribution by depicting the empirical frequency.

For example, consider a landscape consisting of a

3� 3 lattice. There are 9! ways to arrange the cells in

this landscape. Different combinations constitute

various possibilities. When there are a large number

of classes and repeatability is low, the configurational

entropy value tends to be high (Fig. 2a), and when

there are a small number of classes and repeatability is

high, the configurational entropy value tends to be low

(Fig. 2c).

Figure 2 shows that the series ln 1; ln 2; . . .; ln 9
represents the repetition of a configuration. When the

histogram tends to be a Dirac-delta distribution, the

value of configurational entropy reaches the maxi-

mum. In contrast, when the histogram tends to be

uniform, the value of configurational entropy reaches

the minimum.

In a sense, we can consider a histogram as a map of

configurational entropy. However, using a histogram

as a measure is neither convenient nor needed. To

compare two histograms, we can use the Wasserstein

metric to represent their similarities (Villani 2008).

In mathematics, the Wasserstein metric between

the distributions u and v is:

l1ðu; vÞ ¼ inf
p2Cðu;vÞ

Z

R�R

jx� yjdpðx; yÞ ð15Þ

where Cðu; vÞ is the set of (probability) distributions

on R� R whose marginals are u and v on the first and

second factors respectively.

If U and V are the respective cumulative distribu-

tion functions of u and v , this distance also equals to:

l1ðu; vÞ ¼
Zþ1

�1

jU � Vj ð16Þ

Intuitively, if two distributions are treated as two

mounds, the Wasserstein metric is the minimum cost

of having one mound to another. Computationally,

two distributions are required to have the same amount

to calculate the Wasserstein metric (just like two

mounds have the same amount).

It is worth noting that the Wasserstein metric is a

distance function defined between probability distri-

butions. Unlike the transitional Euclidean distance, the

Wasserstein metric is a natural way to compare the

probability distributions of u and v, where one variable

is derived from the other by small, non-uniform

perturbations (random or deterministic). The Wasser-

stein metric defines the geometry over the space of

probability measures using principles from optimal

transport theory. It satisfies the mathematical require-

ments for the distance definition, meaning that it can

be used to compare differences (Deza and Deza 2016;

Dı́az-Varela et al. 2016).

Calculating Spatial configurational entropy using

the Wasserstein metric

With theWasserstein metric, wemeasured a landscape

mosaic and considered how to use this metric to
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Fig. 2 Histogram of configurational entropy coefficients. The

upper panels express the relationship between frequency and

classification, while the lower panels express the relationship

between frequency and the logarithmic sequence
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calculate configurational entropy. Our strategy can be

divided into three parts.

First, the histogram is map of a landscape mosaic

configuration. According to the entropy equation, it

describes the frequency of states. When the configu-

ration changes, the shape of histogram also changes

accordingly. When we want to know the change in

configurational entropy, we can use the histogram to

detect the change in entropy of a system.

Second, calculating theWasserstein metric requires

a reference. The Dirac delta distribution is a good

choice. When a landscape mosaic is in the most

chaotic state, its combined entropy is the largest. At

this time, according to Eq. (13), the histogram formed

by its state tends to be a Dirac delta distribution. It is

like finding the center of a reference system, and the

Dirac delta distribution can be used as a reference

point for calculating spatial configurational entropy.

Thus, the Dirac delta distribution is proposed to be v,

which indicates that the system is in the most chaotic

state. The u content can be filled by the histogram in a

specified configuration.

Third, the calculatedWasserstein metric is used as a

similarity, indicating how close the configurational

entropy of a landscape mosaic is to the maximum

value.

Now we look back at examples in the third

section. Assume v is the baseline histogram and u is

the same as v; then, the Wasserstein metric is 0

(Fig. 3a).

However, in Fig. 3b, the two histograms are

significantly different due to the increased repeatabil-

ity of the configuration. In Fig. 3c, the state repre-

sented by u is the highest order and the similarity

between u and v reaches the maximum.

Notably, the metric calculated here is essentially

the statistical similarity of the distribution of param-

eters in the second and third parts with respect to the

specified distribution.

When the Wasserstein metric is 0, the selected

parameters are exactly the same as in the specified

distribution. For example, if the reference we selected

corresponds to the largest value and the calculated

Wasserstein metric is 0, it means that the parameters

are mapping to the distribution with the maximum

value. For consistency with the definition of entropy,

the similarity wc must be adjusted to 1 – Wc . For the

same reason, the Wasserstein metric in the third part

also needs to be calculated.

Finally, we define relative configurational entropy

as:

Wdist ¼ 1�Wcð Þ 1�Wsð Þ ð17Þ

where Wc represents the similarity of the class

parameters, and Ws represents the similarity of the

spatial parameters.

For convenience, we have organized these ideas

into an algorithm.

According to the proposed algorithm, we calculate

the spatial configurational entropy in Fig. 1. The

results show that the relative configurational entropy is

consistent with the absolute value, but it has the

1 2 3 4 5 6 7 8 9 ln 1 2 3 4 5 6 7 8 9 ln

1 2 3 4 5 6 7 8 9 nl 9 8 7 6 5 4 3 2 1 ln

v

v

u

u

1 2 3 4 5 6 7 8 9 ln

v u

1 2 3 4 5 6 7 8 9 ln

(a)

(b)

(c)

Fig. 3 TheWasserstein metric expresses the cost for the case in

which the block on the left is transported to the right
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advantage of normalization and satisfying the distance

axiom.

In fact, we are more concerned that the value of

absolute entropy will explode in complex cases, while

the relative configurational entropy remains

stable within the range of 0–1. This finding will be

discussed in the next discussion section.

Experimental validation

This section validates the proposed landscape metric

by examining whether it is consistent with absolute

configurational entropy and captures the spatial pat-

tern. The original definition and the Wasserstein

metric was used for a comparative analysis.

We choose six digital elevation models (DEMs)

from the NASA Space Shuttle Radar Terrain Mission

data (http://srtm.csi.cgiar.org/), and the size of each

DEM was 800� 800 pixels.

The selected DEM images are from the eastern and

western regions of China. We roughly arranged these

DEMs according to the degree of chaos in the local

ecological landscape. The results are shown in Fig. 4.

The purposed metric successfully captured disorder

in the landscape, and the Wasserstein metric was

consistent with the absolute entropy calculation.

However, is the proposed metric suitable for the

calculated entropy for different spatial configurations?

Five simulated data with the same configurational

entropy were used to demonstrate the case, and the

results are shown in Fig. 5.

When the landscape class was unique, the entropy

value was the lowest (Fig. 5). As the number of

landscape classes increased, the entropy value

increased quickly. According to the original calcula-

tion, the different spatial configurations can obtain the

same results, but the proposed method can produce

different results.

Discussion

Spatial arrangement

Configurational entropy provides detailed information

on spatial arrangements. As described in the original

definition of configurational entropy, the method for

reduction is to find a repetitive configuration. Without

it, there are n! unique permutations to arrange the unit

of a landscape represented as a lattice of n units.

As a general rule, the entropy of a spatial pattern of

randomness is very high. In the extreme case, the

entropy of a spatial pattern with complete aggregation

is the lowest, while a spatial pattern that is completely

dispersed has the highest entropy.

Many metrics can be used to describe entropy but

the spatial arrangement is a challenging problem

throughout a wide range of disciplines.

The original definition of configurational entropy

does not consider the spatial arrangement, so we can

embed it into the definition. Although our proposed

solution effectively distinguishes the entropy of dif-

ferent spatial configurations, the arrangement method

may be confusing. It prioritizes the different

ln W =1,922,126
Wdist =0.21024 

ln W = 2,896,837
Wdist = 0.34304 

ln W = 3,713,863
Wdist = 0.45047 

ln W = 5,039,728
Wdist = 0.61883 

ln W = 4,782,008
Wdist = 0.57362 

ln W = 4,219,849
Wdist = 0.50342 

(a) (b) (c)

(d) (e) (f)

Fig. 4 Traditional configurational entropy and the Wasserstein

metric were calculated according to the digital elevation models

for the six regions of China, where lnW represents traditional

configurational entropy and Wdist means the relative value

lnW = 60.19
Wdist = 0.1733

lnW = 60.19
Wdist = 0.3219

lnW = 60.19
Wdist = 0.3849

lnW = 144.57
Wdist = 1.00

lnW = 0
Wdist = 0

Fig. 5 The overall landscape sequence is organized by

complexity to represent the relationship between spatial

configuration and entropy. The traditional metric of the three

middle landscapes is equal, but a significant difference was

calculated by the Wasserstein metric
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contiguous spaces, rather than considering factors,

such as the area and perimeter of the spatial features.

However, there is no consensus on how to introduce

spatial arrangement in configurational entropy or how

to define repetition. We followed the principle of

expressing repetitiveness as a permutation and com-

bination problem. If repeatability is defined by other

means, it may be far from the definition of configu-

rational entropy and it may become more difficult to

maintain the characteristics of configurational entropy

and the appropriate extension.

It is necessary to develop a common form to unify

the spatial arrangement metrics into the configura-

tional entropy formula. Previous studies used neighbor

counts of different quantities to construct entropy

related to metric information (proportion of areas

using Voronoi regions of labels), topological infor-

mation (no entropy but average number of neighbors

in a Delaunay graph), and thematic information (using

Voronoi regions adjacency counts) (Li and Huang

2002).

Cushman considered that the total edge length

landscape metric is an appropriate measurement

(Cushman 2016, 2018). Gao et al. (2017) proposed

adding up all of the permutations for each multiset to

obtain the microstate. In fact, the objective of all

metrics is to find spatial repetitiveness.

Therefore, in future research, it will be necessary to

develop a suitable indicator that describes spatial

configuration in a configurational entropy formula.

Multi-scale effect of spatial configurational

entropy

A landscape can be described using different scales of

observation. For example, we know that configura-

tional entropy at a variable spatial scale is completely

different. At this time, the normalized configurational

entropy allows us to know the level of landscape chaos

at each scale.

When the spatial scale changes, the classification

system on the ecological landscape will also change.

Here we used the reclassification method to adapt the

spatial change. According to the scale, we divided the

landscape into 12 levels to explore the relationship

between configurational entropy and scales. Lastly, we

calculated the metric separately at each level, and the

results are shown in Fig. 6.

In response to this problem, we constructed four

sets by shuffling actual data and calculated the

Wasserstein metric. The results are shown in Fig. 7.

As shown in Fig. 7, the entropy of the shuffled data

decreased faster as the scale became smaller. The

results tell us that we should determine the appropriate

range to guarantee the availability of the suggested

metric.

The results show that, when the spatial scale

relative to ecological landscape is too large or small,

the effect of spatial configurational entropy on scale is

different. When the scale is too small, the diversity of

the ecological landscape is neglected, resulting in too

small spatial configurational entropy. This will make it

difficult to compare different ecosystems.

Conversely, when the spatial scale is too large, the

diversity of the ecological landscape is stabilized, but

it will lead to unnecessary calculation costs. There-

fore, to prevent the affecting comparison of landscape

systems at the same scale, we recommend testing

some samples to determine the most appropriate

spatial scale. This approach can be a trade-off between

the rationality of results and the cost of calculation.
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Fig. 6 The Wasserstein metric was significantly different for

the configurations. It varied from 0 to separate maximum value

at different scales in the L1–L12 range. Numerical comparisons

can be made in different configurations and scales because the

Wasserstein metric is normalized. Close values indicate that two

landscape mosaics have similar configurations
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Conclusions

In this study, we have introduced a novel application

of the Wasserstein metric to quantify spatial config-

urational entropy of a landscape mosaic. It was

demonstrated that theWasserstein metric is suitable to

capture the discrepancy between different spatial

configurations. The normalized Wasserstein metric

was used in the analysis of actual landscape data and

performed well.

Although the main objective was to develop a

metric that better represented configurational entropy

using complex landscape mosaic data sets, we also

note that the Wasserstein metric provided a numeri-

cally efficient approximation for the similarity in

histograms, reducing excessive expansion of the

calculated results.

A next step would be to consider a more detailed

study of a specific application. For example, we could

have considered more statistical distribution distances,

such as the energy metric to make configurational

entropy more reasonable. We could have embedded

the spatial effects in the configurational entropy

expression to explore the relationship between spatial

scale, reclassification, and configurational entropy.
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Fig. 7 Comparison of the Wasserstein metric between the real

data and four sets of shuffled data. a–f Represent the order of

actual data from simple to complex
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